MEMTAB Leuven 2020 (virtual) – final program

See below for titles/authors/institution of each talk

Day 1

14.00 – 14.05: Opening and introduction (plenary)

14.05 – 15.05: Keynote session on Path statement (Kent, Steyerberg, van Klaveren)

15.05 – 15.35: linked contributed talks on predicting treatment response (Riley, Hawkins)

15.45 – 17.25: Parallel contributed sessions (2 parallel, 7 talks each, 15 min/talk except last one)

Prediction models session (Archer, Dhiman, Sperrin, Edlinger, Takada, Deeks, Debray)

Diagnostic tests session (Zapf, Vali, Wu, Savva, Cocco, Frey, Yang)

17.35 - 18.15: Invited talk Rudi Pauwels

Day 2

14.00 – 15.00: Keynote Cecile Janssens

15.10 – 16.55: Parellel contributed sessions (2 parallel, 7 talks each, 15 min/talk)

Prediction models session (Upshaw, Sisk, Collins, Olsen, Watson, Whiting, de Jong)

Diagnostic tests session (Taylor-Phillips, Levis, Patel, Rubsamen, Vach, Cerullo, Jenniskens)

17.05 - 17.45: Invited talk Xiaoxuan Liu

17.45 – 17.55: Douglas Altman award and closing

Color legend:

Name: from the 'measurement error and variability' session

Name: from the 'checklist' session

Talks in the two sessions on diagnostic tests

Title	Authors	Institution
Unblinded sample size re-estimation for	Zapf, Hoyer	UMC Hamburg-
diagnostic accuracy studies		Eppendorf
An alternative method for presenting risk of	Vali, Lee, Bossuyt, Zafarmand	Amsterdam
bias assessments in systematic review of		UMC
accuracy studies		
Major depression classification based on	Wu, Levis, Ioannidis, Benedetti,	McGill
different diagnostic interviews: A synthesis of	Thombs	
individual participant data meta-analyses		
What makes a good cancer biomarker? -	Savva, Ni, Hanna, Peters	Imperial College
Developing a consensus		
Developing Target Product Profiles for	Cocco, Ayaz-Shah, Messenger, West, Shinkins	Leeds
medical tests: a methodology review		
Estimating diagnostic accuracy using expert	Jenniskens, Naaktgeboren, Reitsma,	Utrecht
panel probabilistic estimates of target disease	Hooft, Moons, van Smeden,	
status: a case study	Oosterheert, Kaasjager, van Uffen	
Nonparametric Limits of Agreement for small	Frey, Petersen, Gerke	Odense
to moderate sample sizes - a simulation study		
A framework to evaluate proposals to change	Taylor-Phillips, Ferrante di Ruffano,	Birmingham/
a screening test	Geppert, Clarke, Hyde, Harris, Bossuyt,	Warwick
	Deeks	
Bias in diagnostic accuracy estimates due to	Levis, Bhandari, Neupane, Thombs,	Keele/McGill
data-driven cutoff selection: a simulation	Benedetti	
study		
Graphical Enhancements to Summary	Patel, Cooper, Freeman, Sutton	Birmingham/
Receiver Operating Characteristic Plots to		Leicester
Facilitate Diagnostic Test Accuracy Meta-		
Analysis		
Network meta-analysis of cerebrospinal fluid	Rübsamen, Pape, Karch	Munster
and blood biomarkers for the diagnosis of		
sporadic Creutzfeldt-Jakob disease		
Acceleration of diagnostic research: Is there a	Vach, Bibiza-Freiwald, Gerke, Friede,	Basel
potential for seamless designs?	Bossuyt, Zapf	
Estimating Diagnostic Test Accuracy,	Cerullo, Sutton, Cooper, Quinn	Leicester
Adjusting for Imperfection in the Reference		
Standard arising from Interrater Reliability		
QUADAS-C: a tool for assessing risk of bias in	Yang, Whiting, Davenport, Deeks,	Amsterdam
comparative diagnostic accuracy studies	Hyde, Mallett, Takwoingi, Leeflang	UMC

Talks in the two sessions on prediction models

Title	Authors	Institution
Minimum sample size for external validation	Archer, Snell, Ensor, Hudda, Collins, Riley	Keele
of a clinical prediction model with a		
continuous outcome		
A systematic review of Oncology clinical	Dhiman, Ma, Speich, Bullock, Andaur-	Oxford
prediction models developed using Machine	Navarro, Kirtley, Van Calster, Riley,	
Learning methods	Moons, Collins	
Causal interpretation of clinical prediction	Sperrin, Lin, Jenkins, Peek	Manchester
models: When, why and how.		
Risk prediction with discrete ordinal	Edlinger, van Smeden, Alber, Steyerberg,	Leuven
outcomes; calibration and the impact of the	Van Calster	
proportional odds assumption		
Estimation of unreported intercept of a	Takada, van Lieshout, Hoogland, Schuit,	Utrecht
prediction model using logistic regression	Reitsma	
modeling		
AI phone apps for skin cancer: Reviewing the	Deeks, Dinnes, Freeman, Chuchu,	Birmingham
evidence, regulations, marketing, plus what	Bayliss, Matin, Jain, Takwoingi, Walter,	
happened next	Williams	
Adjusting for predictor misclassification in an	de Jong, Campbell, Jaenisch, Gustafson,	Utrecht
individual participant data meta-analysis of	Debray	
observational studies		
Performance of Heart Failure Clinical	Upshaw, Nelson, Koethe, Park,	Tufts
Prediction Models: A Systematic External	McGinnes, Wessler, Van Calster, van	
Validation Study	Klaveren, Steyerberg, Kent	
Informative observation and Informative	Sisk, Lin, Martin, Sperrin, Peek	Manchester
Presence in clinical prediction models: a		
review of methods		
PENALISATION AND SHRINKAGE METHODS	Collins, Riley	Oxford/Keele
DO NOT GUARANTEE A RELIABLE PREDICTION		
MODEL		
Evaluating the performance of a polygenic	Olsen, Fischer, Bossuyt, Goetghebeur	Amsterdam
risk score, for breast cancer risk stratification		UMC
A Systematic Review of Prognostic Models for	Watson, Tudur Smith, Bonnett	Liverpool
Recurrent Event Data		
Prognostic model to clinical tool: the	Whiting DA	Oxford
OxMIV tool for violence risk in psychiatry		
TRIPOD-CLUSTER: reporting of prediction	Debray, Snell, van Calster, Collins, Riley,	Utrecht
model studies in IPD-MA, EHR and other	Reitsma, Altman, Moons	
clustered datasets		

Contributed talks in the keynote session on prediction models linked to Kent's keynote on PATH

Title	Authors	Institution
Individual participant data meta-analysis to examine treatment-covariate interactions: statistical recommendations for conduct and planning	Riley, Debray, Fisher, Hattle, Marlin, Hoogland, Gueyffier, Staessen, Wang, Moons, Reitsma, Ensor	Keele
Test and Treat Superiority Plot: estimating threshold performance for developers of tests for treatment response	Hawkins, Briggs, Bouttell, Pomonomarev	Glasgow